- In [30]: #Data analysis of the Fatality Analysis Reporting System (FARS)
 #from the National Highway Traffic Safety Administration
 #(1975-1981)
- In [2]: accidents <- read.csv("/class/datamine/data/fars/7581.csv")</pre>
- In []: #The "head" command gives us a preview of the data in this dataset. #It has 45 different variables reported for 43,445 seperate #accidents.
- In [38]: head(accidents)

A data.frame: 6 x 45

	STATE	COUNTY	MONTH	DAY	YEAR	HOUR	MINUTE	VE_FORMS	PERSONS
	<int></int>								
9955	17	31	1	2	1975	17	45	4	6
9956	17	43	1	2	1975	19	46	2	3
9957	17	31	3	10	1975	19	55	1	2
9958	17	117	1	4	1975	4	20	1	1
9959	17	31	1	5	1975	17	2	1	5
9960	17	113	1	5	1975	3	0	1	2

- In []: #If we wanted to look at accidents involving drunk drivers, we can #load a table of all accidents involving drunk drivers sorted by #the number of drunk drivers involved.
- In [46]: table(accidents\$DRUNK_DR)

0	1	2	3	4	6
28956	13575	887	24	2	1

- In []: #i.e. there were 28,956 accidents that did not involve #drunk drivers, 13,575 accidents that involved 1 drunk driver..., #and 1 accident that involved 6 drunk drivers.
- In []: #We can look at two simultameous variables from our dataset. #For instance, we can see how many accidents involved both #drunk drivers and school buses.

0	1
19019	124
11233	7
823	0
23	0
2	0
1	0
	19019 11233 823 23 2

- In []: #i.e. this table shows there were 124 cases where 1 school bus #crashed and no drunk drivers were involved, and 7 where #1 school bus and 1 drunk driver were involved.
- In [60]: #We can easily sort the number of accidents involving #drunk drivers and school buses by year.
- In [52]: table(accidents\$YEAR[which(accidents\$DRUNK_DR > 0 & accidents\$SCH_B
 US==1)])
 1977 1978 1979 1981

1 2 2 2

In [62]: #To see an example with more data points, we can look at drunk
#drivers and number of fatalities

In [64]: table(accidents\$DRUNK_DR, accidents\$FATALS)

0 1 2 3 4	1 26394 12032 642 18 1	2 2057 1245 189 2 0	3 350 222 40 3 0	4 117 47 10 0 1	5 25 22 4 1 0	6 5 1 0	7 3 2 1 0	8 2 0 0 0	9 1 0 0 0	12 1 0 0 0
4	1	0	0	1	0	0	0	0	0	0
6	1	0	0	0	0	0	0	0	0	0

- In []: #We can also sort this data by year.
- In [61]: table(accidents\$YEAR[which(accidents\$DRUNK_DR > 0 & accidents\$FATAL
 S)])
 1975 1976 1977 1978 1979 1980 1981
 1039 1361 2235 2400 2568 2465 2421
- In []: #We can look to see if weather impacts the number of accidents. #One way is to look at Indiana and its surronding states to see #whether inclement winter weather increases the number of #accidents per month.

- In []: #Interestingly, we see the winter months actually have less
 #accidents!
- In []: #Now lets add colors and labels to better explain the information
 #given.

```
In [36]: library(RColorBrewer)
         coul <- brewer.pal(5, "Set2")</pre>
          dat <- accidents[accidents$STATE %in% c(17, 18, 26, 39),]</pre>
         dat$STATE <- factor(dat$STATE, labels=c("Illinois", "Indiana", "Mic</pre>
         higan", "Ohio"))
          barplot(table(dat$STATE, dat$MONTH),
                  col=coul,
                  xlab="Months of the year",
                  ylab="Number of accidents",
                  main="Number of accidents per month by state",
                  xlim=c(0, 20),
                  args.legend=list(x=19.3, y=4600),
                  legend=T
                 )
```


Number of accidents per month by state

In []: #The following graph shows which day of the week has the most #cummulative fatal accidents.

- In [89]: #This graph shows that more traffic fatalities occured on the #weekends than on weekdays.
- In [103]: #We can also look at the number of accidents based upon the time of
 #day.

In []: #In this we used the "cut" function to parse the number of #accidents per time of day. Specifically we looked at from #midnight to 6a.m., 6a.m. to noon, noon to 6p.m., 6p.m. to #midnight, and there is an unknown category.